Rider model identification using dynamic neural networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملSystem Identification Using Functional - Link Neural Networks with Dynamic Structure
The paper considers the development of a new type of artificial neural network and its applicability to non-linear system identification. This is the functional-link neural network with internal dynamic elements. The net consists of a single layer where the nonlinearity is firstly introduced by enhancing the input pattern with a functional expansion. The internal dynamic elements are auto-regre...
متن کاملSystem Identification Using Dynamic Neural Networks: Training and Initialization Aspects
This paper explores training and initialization aspects of dynamic neural networks when applied to the nonlinear system identification problem. A well known dynamic neural network structure contains both output states and hidden states. Output states are related to the outputs of the system represented by the network. Hidden states are particularly important in allowing dynamic neural networks ...
متن کاملNonlinear Systems Identification Using Deep Dynamic Neural Networks
Neural networks are known to be effective function approximators. Recently, deep neural networks have proven to be very effective in pattern recognition, classification tasks and human-level control to model highly nonlinear realworld systems. This paper investigates the effectiveness of deep neural networks in the modeling of dynamical systems with complex behavior. Three deep neural network s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2347